z-logo
Premium
REMARQUES SUR UNE SOMME LIÉE À LA FONCTION DE MÖBIUS
Author(s) -
Bretèche Régis de la,
Dress François,
Tenenbaum Gérald
Publication year - 2020
Publication title -
mathematika
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.955
H-Index - 29
eISSN - 2041-7942
pISSN - 0025-5793
DOI - 10.1112/mtk.12021
Subject(s) - mathematics , combinatorics , integer (computer science) , constant (computer programming) , computer science , programming language
For integer n ⩾ 1 and real z ⩾ 1 , define M ( n , z ) : = ∑ d | n , d ⩽ z μ ( d ) , where μ denotes the Möbius function. Put L ( y ) : = exp { ( log y ) 3 / 5 / ( log 2 y ) 1 / 5 }( y ⩾ 3 ) . We show that, for a suitable, explicit constant L > 0 and some constant c > 0 , we have S ( x , z ) = L x + O ( x / L ( 3 ξ ) c )uniformly for x ⩾ 1 , ξ ⩽ z ⩽ x / ξ .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom