Premium
Hardy–Landau–Littlewood Inequalities for Fractional Derivatives in Weighted L p Spaces
Author(s) -
Hughes Rhonda J.
Publication year - 1987
Publication title -
journal of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.441
H-Index - 62
eISSN - 1469-7750
pISSN - 0024-6107
DOI - 10.1112/jlms/s2-35.3.489
Subject(s) - mathematics , fractional calculus , hardy space , combinatorics , pure mathematics , mathematical analysis , mathematical physics
The inequality of Hardy, Landau and Littlewood is established in weighted L p spaces, for weights satisfying Muckenhoupt's ( A p ) condition. That is, for f ∈ Dom ( D γ ), where D γ denotes the γth fractional derivative acting inL ω p (0, ∞),‖ D α f ‖ ω ⩽ K‖ f ‖ ω 1 − ( α / γ )‖ D γ f ‖ ω α / γ, for 0 < α < γ, and‖ f ‖ ω =(∫ 0 ∞| f ( x ) |p w ( x ) d x )1 / p. In addition, we show that the indefinite integral possesses a strongly continuous group of imaginary powers inL ω p (0, ∞).