Premium
The Diophantine Equation y 2 = ax 3 + bx 2 + cx + d
Author(s) -
Baker A.
Publication year - 1968
Publication title -
journal of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.441
H-Index - 62
eISSN - 1469-7750
pISSN - 0024-6107
DOI - 10.1112/jlms/s1-43.1.1
Subject(s) - diophantine equation , combinatorics , citation , mathematics , algebra over a field , physics , computer science , library science , pure mathematics
summary:Let $n$ be a positive odd integer. In this paper, combining some properties of quadratic and quartic diophantine equations with elementary analysis, we prove that if $n>1$ and both $6n^2-1$ and $12n^2+1$ are odd primes, then the general elliptic curve $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$ has only the integral point $(x, y)=(2, 0)$. By this result we can get that the above elliptic curve has only the trivial integral point for $n=3, 13, 17$ etc. Thus it can be seen that the elliptic curve $y^2=x^3+27x-62$ really is an unusual elliptic curve which has large integral points