Premium
Note on the Binomial Coefficients
Author(s) -
Obláth Richard
Publication year - 1948
Publication title -
journal of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.441
H-Index - 62
eISSN - 1469-7750
pISSN - 0024-6107
DOI - 10.1112/jlms/s1-23.4.252
Subject(s) - binomial coefficient , citation , binomial (polynomial) , library science , mathematics , computer science , combinatorics , statistics
It is important to be familiar with manipulating binomial coefficients, so we give some basic facts and identities governing them. You should be able to prove all the identities given Fact 1. The number of subsets of an n-element set of size k is defined to be n k Fact 2. A combinatorial proof shows n k = n! k!(n − k)! Fact 3. Arithmetic on Fact 2 gives n k = n(n − 1)(n − 2). .. (n − k + 1) k! Fact 4. From Fact 1 we get n 0 = 1 = n n and n k = 0 if k > n Fact 5. Symmetry of binomial coefficients n k = n n − k Fact 6. The generalized binomial coefficient for a ∈ Q and k ∈ {0, 1, 2,. . .} is defined by a k = a(a − 1)(a − 2). .. (a − k + 1) k! Fact 7. −1 k = (−1) k and −n k = (−1) k n + k − 1 k .