Premium
Krull–Gabriel dimension and the model‐theoretic complexity of the category of modules over group rings of finite groups
Author(s) -
Puninski Gena,
Puninskaya Vera,
Toffalori Carlo
Publication year - 2008
Publication title -
journal of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.441
H-Index - 62
eISSN - 1469-7750
pISSN - 0024-6107
DOI - 10.1112/jlms/jdn015
Subject(s) - krull dimension , mathematics , dimension (graph theory) , group (periodic table) , pure mathematics , combinatorics , discrete mathematics , algebra over a field , physics , noetherian , quantum mechanics
We classify group rings of finite groups over a field F according to the model‐theoretic complexity of the category of their modules. For instance, we prove that, if F contains a primitive cubic root of 1, then the Krull–Gabriel dimension of such rings is 0, 2, or undefined.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom