Premium
G ‐odometers and their almost one‐to‐one extensions
Author(s) -
Cortez María Isabel,
Petite Samuel
Publication year - 2008
Publication title -
journal of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.441
H-Index - 62
eISSN - 1469-7750
pISSN - 0024-6107
DOI - 10.1112/jlms/jdn002
Subject(s) - odometer , computer science , artificial intelligence
In this paper we recall the concepts of G ‐odometers and G ‐subodometers for G ‐actions, where G is a discrete finitely generated group; these generalize the notion of an odometer in the case G = ℤ. We characterize the G ‐regularly recurrent systems as the minimal almost one‐to‐one extensions of subodometers, from which we deduce that the family of the G ‐Toeplitz subshifts coincides with the family of the minimal symbolic almost one‐to‐one extensions of subodometers. We determine the continuous eigenvalues of these systems. When G is amenable and residually finite, a characterization of the G ‐invariant measures of these systems is given.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom