z-logo
Premium
Weighted Norm Inequalities for Singular Integral Operators
Author(s) -
Pérez C.
Publication year - 1994
Publication title -
journal of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.441
H-Index - 62
eISSN - 1469-7750
pISSN - 0024-6107
DOI - 10.1112/jlms/49.2.296
Subject(s) - singular integral , maximal operator , mathematics , iterated function , combinatorics , singular integral operators , norm (philosophy) , integer (computer science) , operator (biology) , mathematical analysis , integral equation , chemistry , biochemistry , repressor , political science , computer science , transcription factor , law , bounded function , gene , programming language
For a Calderón‐Zygmund singular integral operator T , we show that the following weighted inequality holds∫ R n| T f ( y ) | p w ( y ) dy ⩽ C ∫ R n| f ( y ) | pM [ p ] + 1w ( y ) dy ,where M k is the Hardy‐Littlewood maximal operator M iterated k times, and [ p ] is the integer part of p . Moreover, the result is sharp since it does not hold for M [ p ] . We also give the following endpoints results: w ( { y ∈ R n : | Tf ( y ) | > λ } ) ⩽ C λ ∫ R n| f ( y ) | M 2 w ( y ) dy , and∫ R n| T f ( y ) | w ( y ) dy ⩽ C ∥ f ∥ H 1 ( M w ), where H 1 (μ) is the atomic Hardy space with respect to μ.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom