z-logo
Premium
Fractional decay bounds for nonlocal zero order heat equations
Author(s) -
Chasseigne E.,
Felmer P.,
Rossi J. D.,
Topp E.
Publication year - 2014
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/blms/bdu042
Subject(s) - mathematics , bounded function , order (exchange) , zero (linguistics) , combinatorics , polynomial , upper and lower bounds , heat equation , mathematical physics , mathematical analysis , linguistics , philosophy , finance , economics
In this paper, we obtain bounds for the decay rate for solutions to the nonlocal problem∂ t u ( t , x ) = ∫ R n J ( x , y ) [ u ( t , y ) − u ( t , x ) ]d y . Here we deal with bounded kernels J but with polynomial tails, that is, we assume a lower bound of the form J ( x , y ) ⩾ c 1| x − y | − ( n + 2 σ ), for| x − y | > c 2 . Our estimates takes the form∥ u ( t ) ∥L q ( R n )⩽ C t − ( n / 2 σ ) ( 1 − 1 / q )for t large.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom