z-logo
Premium
Integer‐valued definable functions
Author(s) -
Jones G. O.,
Thomas M. E. M.,
Wilkie A. J.
Publication year - 2012
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/blms/bds059
Subject(s) - mathematics , integer (computer science) , infinity , polynomial , exponential function , function (biology) , combinatorics , rational function , exponential polynomial , discrete mathematics , field (mathematics) , pure mathematics , mathematical analysis , evolutionary biology , computer science , biology , programming language
We present a dichotomy, in terms of growth at infinity, of analytic functions definable in the real exponential field which take integer values at natural number inputs. Using a result concerning the density of rational points on curves definable in this structure, we show that if a definable, analytic function f : [0, ∞) k →ℝ is such that f (ℕ k ) ⊆ ℤ, then either sup |x̄|⩽ r | f (x̄)| grows faster than exp( r δ ), for some δ>0, or f is a polynomial over ℚ.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom