z-logo
Premium
Approximation of functions and their derivatives by analytic maps on certain Banach spaces
Author(s) -
Azagra D.,
Fry R.,
Keener L.
Publication year - 2011
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/blms/bdr032
Subject(s) - mathematics , banach space , separable space , lipschitz continuity , bounded function , hilbert space , polynomial , pure mathematics , analytic function , space (punctuation) , discrete mathematics , mathematical analysis , philosophy , linguistics
Let X be a separable Banach space that admits a separating polynomial; in particular, let X be a separable Hilbert space. Let f : X → ℝ be bounded and Lipschitz, with uniformly continuous derivative. Then, for each ε > 0, there exists an analytic function g : X → ℝ with | g − f | < ε and ‖ g ′ − f ′ ‖ < ε.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom