Premium
The non‐existence of Cameron–Liebler line classes with parameter 2 < x ⩽ q
Author(s) -
Metsch Klaus
Publication year - 2010
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/blms/bdq057
Subject(s) - mathematics , line (geometry) , quadrangle , combinatorics , pure mathematics , discrete mathematics , geometry , archaeology , history
In this paper it is proved that Cameron–Liebler line classes with parameter x do not exist when 2 < x ⩽ q . We also give a geometrical‐combinatorial proof of the equivalent properties that can be used to define Cameron–Liebler line classes. Finally, we use the same technique as in this proof to prove a result on partial m ‐covers of the classical parabolic generalized quadrangle.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom