Premium
A sharp combinatorial version of Vaaler's theorem
Author(s) -
Ball K. M.,
Prodromou M.
Publication year - 2009
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/blms/bdp062
Subject(s) - mathematics , section (typography) , combinatorics , subspace topology , cube (algebra) , identity (music) , measure (data warehouse) , quadratic equation , dimension (graph theory) , discrete mathematics , volume (thermodynamics) , pure mathematics , mathematical analysis , geometry , quantum mechanics , physics , database , advertising , acoustics , computer science , business
In 1979 Vaaler proved that every d ‐dimensional central section of the cube [−1, 1] n has volume at least 2 d . We prove the following sharp combinatorial analogue. Let K be a d ‐dimensional subspace of ℝ n . Then, there exists a probability measure P on the section [−1, 1] n ∩ K such that the quadratic form∫[ − 1 , 1 ] n ∩ Kυ ⊗ υ d P ( υ )dominates the identity on K (in the sense that the difference is positive semi‐definite).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom