z-logo
Premium
Traces and extensions of matrix‐weighted Besov spaces
Author(s) -
Frazier Michael,
Roudenko Svetlana
Publication year - 2008
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/blms/bdm108
Subject(s) - mathematics , combinatorics , trace (psycholinguistics) , identity matrix , matrix (chemical analysis) , bounded function , exponent , converse , mathematical analysis , eigenvalues and eigenvectors , geometry , philosophy , linguistics , physics , materials science , quantum mechanics , composite material
Let V be a matrix weight on ℝ n +1 and let W be a matrix weight on ℝ n , satisfying, for example, the matrix A p condition. Define the trace, or restriction, operator Tr by Tr ( f )( x ′ )= f ( x ′ , 0), where x ′ ∈ℝ n and f is a function on ℝ n +1 . If α−1/ p > n (1/ p −1) + +(β− n )/ p , where β is the doubling exponent of W , then the trace operator is bounded fromB . p α q( V )intoB . p α − 1 / p , q( W )(matrix‐weighted Besov spaces) if and only if the weights V and W uniformly satisfy an estimate controlling the average of | | W 1 / p ( t ) y → | | p on any dyadic cube I ⊆ ℝ n by the average of | | V 1 / p ( t ) y → | | p on Q ( I )= I ×[0, ℓ( I )], for all y → . If V and W satisfy the converse inequality, then there exists a continuous linear map Ext :B ˙ p α − 1 / p , q( W ) → B ˙ p α q( V ) . If both inequalities hold, then Tr ○ Ext is the identity onB ˙ p α − 1 / p , q( W ) .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom