Premium
Concordance crosscap number of a knot
Author(s) -
Zhang Gengyu
Publication year - 2007
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/blms/bdm058
Subject(s) - knot (papermaking) , betti number , mathematics , combinatorics , bounding overwatch , artificial intelligence , computer science , chemical engineering , engineering
We define the concordance crosscap number γ c ( K ) of a knot K as the minimum crosscap number among all the knots concordant to K . The four‐dimensional crosscap number γ *( K ) is the minimum first Betti number of non‐orientable surfaces smoothly embedded in the four‐dimensional ball, bounding the knot K . Clearly, γ *( K ) ⩽ γ c ( K ). We construct two infinite sequences of knots for which γ* ( K ) < γ c ( K ). In particular, the knot 7 4 is one of the examples.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom