z-logo
Premium
Quadratic Forms on Finite Groups II
Author(s) -
Wall C. T. C.
Publication year - 1972
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/blms/4.2.156
Subject(s) - mathematics , quadratic equation , pure mathematics , algebra over a field , geometry
In my paper [1] I showed how a quadratic form on a finitely generated abelian group H led to one on a finite group G, and similarly for symmetric bilinear forms. The prototype for this is the relation between the intersection form on Hk(M ) for a manifold M, and the linking form on Hk.i(dM). I also showed that any form on G could so arise, but did not discuss uniqueness. Similar forms had already been considered by various authors [2; 3; 4] (including many of the results of [1] and some not to be found there); in particular, Kneser and Puppe [5] claimed that the symmetric bilinear form on G determined that on H up to stable equivalence, and proved this in the case \G\ odd. Complete proofs have since been given by Wilkens [Ph.D. thesis, University of Liverpool, 1971] and Durfee [Ph.D. thesis, Cornell University, 1971]; the former by lengthy matrix manipulations, the latter using a delicate p-adic analysis. Durfee in fact obtains the corresponding result for quadratic forms. The object of this paper is to present a direct and simple proof of the latter result, which arose out of work on [6; Chapter 8]. The argument can be generalised to replace Z by any order in a finite algebra over Q with anti-involution, without essential change.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom