z-logo
Premium
On the Number of Subgroups of Given order and Exponent p in a Finite Irregular p ‐Group
Author(s) -
Berkovich Yakov
Publication year - 1992
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/blms/24.3.259
Subject(s) - mathematics , exponent , order (exchange) , combinatorics , integer (computer science) , group (periodic table) , class (philosophy) , physics , philosophy , linguistics , finance , quantum mechanics , artificial intelligence , computer science , economics , programming language
If G is a p ‐group of order p m and exponent p , m > 3, n ε{2,…, m − 2}, then [1] G contains 1+ p +2 p 2 + kp 2 ( k ⩾ 0 is an integer) subgroups of order p n . In this note we prove an analogous result for irregular p ‐groups, p > 3, which are not groups of maximal class for n ε{2,…, p −2}.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom