z-logo
Premium
The Expected order of a Random Permutation
Author(s) -
Goh William M. Y.,
Schmutz Eric
Publication year - 1991
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/blms/23.1.34
Subject(s) - mathematics , random permutation , permutation (music) , combinatorics , order (exchange) , permutation group , symmetric group , cyclic permutation , partial permutation , parity of a permutation , binary logarithm , discrete mathematics , physics , finance , acoustics , economics
Let μ n be the expected order of a random permutation, that is, the arithmetic mean of the orders of the elements in the symmetric group S n . We prove that log μ n ñ c √( n /log n ) as n → ∞, where c = 2( 2 ∫ 0 ∞ log log ( e 1 ‐ e ‐ t) d t ).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom