z-logo
Premium
On Simultaneous Optimization of Norms of Derivatives of Lagrange Interpolation Polynomials
Author(s) -
Szabados J.,
Vértesi P.
Publication year - 1989
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/blms/21.5.475
Subject(s) - mathematics , lagrange polynomial , interpolation (computer graphics) , norm (philosophy) , trigonometric interpolation , polynomial interpolation , order (exchange) , birkhoff interpolation , derivative (finance) , second derivative , pure mathematics , algebra over a field , mathematical analysis , combinatorics , linear interpolation , polynomial , computer science , animation , computer graphics (images) , finance , political science , financial economics , law , economics
It is proved that the norm‖ ∑ k = 1 n( 1 − x k 2 )1 2 r| l k ( r )( x ) | ‖of the r th derivative of Lagrange interpolation polynomials can be of optimal order of magnitude only for three consecutive values of r .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom