z-logo
Premium
Noetherian Rings with Big Indecomposable Projective Modules
Author(s) -
Hodges T. J.,
Stafford J. T.
Publication year - 1989
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/blms/21.3.249
Subject(s) - krull dimension , mathematics , indecomposable module , noetherian , global dimension , projective module , pure mathematics , finitely generated abelian group , dimension (graph theory) , local ring , noetherian ring , module , ring (chemistry) , projective test , discrete mathematics , regular local ring , algebra over a field , chemistry , organic chemistry
Let { s 1 : 1 ⩽ i < ∞} be a set of strictly positive integers. We produce an example of a ring R such that (a) R is a Noetherian domain, integral over its centre, of (classical or Rentschler‐Gabriel) Krull dimension one and (b) for each i there exists an indecomposable, finitely generated, projective right R ‐module P 1 such that P 1 has uniform dimension s 1 . This answers [3, Question B].

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom