z-logo
Premium
A Combinatorial Application of the Maximal Ergodic Theorem
Author(s) -
Peres Yuval
Publication year - 1988
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/blms/20.3.248
Subject(s) - mathematics , ergodic theory , probability measure , combinatorics , measure (data warehouse) , lemma (botany) , compact space , space (punctuation) , discrete mathematics , borel measure , extension (predicate logic) , function (biology) , measurable function , pure mathematics , mathematical analysis , bounded function , ecology , linguistics , philosophy , poaceae , database , computer science , biology , evolutionary biology , programming language
Let X be a compact space,μ a Borel probability measure on X , T : X → X a measure preserving continuous transformation and g : X → R a continuous function. Then for some y ∈ X , ∀ N ⩾ 1 1 N ∑ n = 1 N g ( T n ( y ) ) ⩾ ∫ g   d μ.This Lemma is used to give an alternative proof of a result by Ruzsa [6], which implies the following extension of a result of Bergelson [1]. If E ⊂ N satisfiesB D ¯ ( E ) = inf n > 0sup k ⩾ 01 n | E ∩ [ k + 1 ,   k + n ]| ⩾ 0 , then there exists a set Λ ⊂ N such that n −1|Λ∩[1,n]| ⩾B D ¯ (E) for all, n ⩾ 1, and any finite subset {λ 1 , … λ k } ⊂ Λ satisfies∩ i = 1 k( E + λ i )≠ Ø.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom