z-logo
Premium
On orders Solely of Abelian Groups II
Author(s) -
Narlikar M. J.,
Srinivasan S.
Publication year - 1988
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/blms/20.3.211
Subject(s) - mathematics , abelian group , order (exchange) , combinatorics , cyclic group , group (periodic table) , constant (computer programming) , euler's formula , elementary abelian group , discrete mathematics , mathematical analysis , physics , finance , quantum mechanics , computer science , economics , programming language
Let C ′( x ) denote the number of integers n ⩽ x such that there is no non‐abelian group of order n , but there exists a non‐cyclic group of order n . Here it is shown thatC ′ ( x ) ∼ e − γx log   log   x( log   log   log   x ) 2,x → ∞ ,where γ denotes Euler's constant.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom