z-logo
Premium
Heisenberg uniqueness pairs for the hyperbola
Author(s) -
Giri Deb Kumar,
Rawat Rama
Publication year - 2021
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/blms.12391
Subject(s) - hyperbola , uniqueness , mathematics , heisenberg group , lattice (music) , combinatorics , pure mathematics , mathematical analysis , geometry , physics , acoustics
Let Γ be the hyperbola { ( x , y ) ∈ R 2 : x y = 1 } and Λ β be the lattice‐cross defined byΛ β = ( Z × { 0 } ) ∪ ( { 0 } × β Z )in R 2 , where β is a positive real. A result of Hedenmalm and Montes‐Rodríguez says that ( Γ , Λ β ) is a Heisenberg uniqueness pair if and only if β ⩽ 1 . In this paper, we show that for a rational perturbation of Λ β , namelyΛ β θ = ( Z + { θ } ) × { 0 } ∪ { 0 } × β Z , where θ = 1 / p , for some p ∈ N and β is a positive real, the pair ( Γ , Λ β θ ) is a Heisenberg uniqueness pair if and only if β ⩽ p .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom