z-logo
Premium
Non‐existence results for an eigenvalue problem involving Lipschitzian non‐linearities with non‐positive primitive
Author(s) -
Goubet Olivier,
Ricceri Biagio
Publication year - 2019
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/blms.12249
Subject(s) - mathematics , bounded function , annulus (botany) , eigenvalues and eigenvectors , zero (linguistics) , domain (mathematical analysis) , pure mathematics , curvature , function (biology) , mean curvature , combinatorics , mathematical analysis , geometry , quantum mechanics , linguistics , philosophy , botany , physics , evolutionary biology , biology
Let Ω ⊂ R N( N ⩾ 2 ) be a bounded smooth domain. In this paper, we prove that if either ∂ Ω has non‐negative mean curvature or Ω is an annulus, then, for each Lipschitzian function f : R → R such thatsup ξ ∈ R∫ 0 ξ f ( t ) d t = 0 , the problem− Δ u=f ( u )inΩ ,u =0on∂ Ωhas no non‐zero classical solutions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom