z-logo
Premium
Discrete bilinear Radon transforms along arithmetic functions with many common values
Author(s) -
Dong Dong,
Meng Xianchang
Publication year - 2018
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/blms.12127
Subject(s) - mathematics , euler's totient function , prime (order theory) , bilinear interpolation , bounded function , function (biology) , discrete mathematics , combinatorics , pure mathematics , euler's formula , arithmetic , mathematical analysis , statistics , evolutionary biology , biology
We prove that for a large class of functions P and Q , there exists d ∈ ( 0 , 1 ) such that the discrete bilinear Radon transformB P , Q dis( f , g ) ( n ) = ∑ m ∈ Z ∖ { 0 } f ( n − P ( m ) ) g ( n − Q ( m ) ) 1 mis bounded froml 2 × l 2into l 1 + εfor any ε ∈ ( d , 1 ) . In particular, the boundedness holds for any ε ∈ ( 0 , 1 ) when P (or Q ) is the Euler totient function ϕ ( | m | ) or the prime counting function π ( | m | ) .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom