Premium
Standing waves for 4‐superlinear Schrödinger–Poisson systems with indefinite potentials
Author(s) -
Liu Shibo,
Wu Yue
Publication year - 2017
Publication title -
bulletin of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.396
H-Index - 48
eISSN - 1469-2120
pISSN - 0024-6093
DOI - 10.1112/blms.12019
Subject(s) - mathematics , schrödinger's cat , operator (biology) , poisson distribution , space (punctuation) , contrast (vision) , morse theory , morse code , mathematical physics , mathematical analysis , pure mathematics , physics , telecommunications , linguistics , philosophy , repressor , transcription factor , optics , gene , computer science , statistics , biochemistry , chemistry
In this paper we consider 4‐superlinear Schrödinger–Poisson systems. In contrast to most studies, we consider the case where the potential V is indefinite so that the Schrödinger operator − Δ + V possesses a finite‐dimensional negative space. We obtain nontrivial solutions for the problem via Morse theory.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom