z-logo
open-access-imgOpen Access
Effect of dopants [Gd3+, Sm3+, Ca2+, Sr2+ and Ba2+] on the performance characteristics of ceria based electrolytes for application in solid oxide fuel cells
Author(s) -
Mullukattil Lukose Reni,
A. Samson Nesaraj
Publication year - 2014
Publication title -
malaysian journal of fundamental and applied sciences
Language(s) - English
Resource type - Journals
ISSN - 2289-599X
DOI - 10.11113/mjfas.v10n2.258
Subject(s) - materials science , electrolyte , oxide , dopant , fluorite , particle size , solid oxide fuel cell , conductivity , doping , chemical engineering , analytical chemistry (journal) , dielectric spectroscopy , electrochemistry , chemistry , metallurgy , chromatography , optoelectronics , electrode , engineering
Doped CeO2 based materials are now-a-days proposed as alternate electrolyte materials for solid oxide fuel cells (SOFCs) working at low temperature (~723 – 873 K). In this research work, nanoparticles of CeO2 doped with Gd3+, Sm3+, Ca2+, Sr2+ and Ba2+were prepared by a simple homogeneous chemical precipitation method. The prepared materials (after heat treatment at 1023 K for 2 hours) were systematically characterized by XRD, EDAX analysis, FTIR , particle size analysis and SEM.  Lattice parameters were calculated from the XRD data. The XRD results indicate that all the doped ceria samples studied are single phase with a cubic fluorite structure. The average particle size of the doped ceria powder was about 48 – 115 nm and the particles have shown narrow particle size distribution patterns. AC impedance spectroscopy studies performed on the sintered specimens have shown better oxide ion conductivity values and hence these materials may be suitable for application as electrolyte materials in solid oxide fuel cells working at low temperature (~723 – 873 K). GRAPHICAL ABSTRACT

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here