Open Access
RECYCLED TIRE ISOLATOR AS EARTHQUAKE RESISTANCE SYSTEM FOR SINGLE STOREY BUILDING IN MALAYSIA
Author(s) -
Siow Yun Tong,
Anuar Kasa,
Siti Aminah Osman
Publication year - 2020
Publication title -
malaysian journal of civil engineering
Language(s) - English
Resource type - Journals
ISSN - 1823-7843
DOI - 10.11113/mjce.v32n2.647
Subject(s) - isolator , earthquake resistance , engineering , foundation (evidence) , structural engineering , induced seismicity , civil engineering , archaeology , electronic engineering , history
The studies of seismic isolation have gradually become important particularly in countries of active seismicity activity. The main idea of isolation is to provide flexibility to the structural foundation as well as to absorb energy and mitigating ground acceleration generated from earthquake forces. However, the cost to manufacture conventional commercial rubber isolator is high due to its heavy weight complicated in the process of preparation involving expensive machinery. When earthquake occurs, the building structure especially low rise residential buildings such as single storey buildings are subjected to high inertia forces which lead to structural damages. Country such as Malaysia which located outside the earthquake region is now even facing the threat of earthquake too in some areas especially Sabah. This alerts Malaysia that there is a need to develop an earthquake resistance mechanism. Recycled Tire Isolator (RTI) is a model designed to be embedded into the foundation of a low rise building in order to withstand earthquake forces. The main component in the fabrication of RTI is recycled tire. The useable section of the recycle tire is the tread and will be split into small pieces with measurement of 300mm x 210mm. Each piece of cut tire is about 10mm thick. The method of preparation of RTI samples is simple which is cost effective and sustainable. RTI samples consist of four to five layers of cut recycled tire pads. Static compression test was conducted to examine the vertical capacity of RTI. A controlled vertical force of 380 kN (maximum capacity of the compression test machine) was applied on to the RTI during the compression test. An average displacement of 11.5mm was recorded when the cracking sound was heard indicating the failure of RTI sample. The static or vertical stiffness of RTI was determined. Besides, dynamic compressive load test was another experiment carried out to examine the damping coefficient, damping ratio and also dynamic stiffness of RTI. The results obtained from the experiment were compared with the commercial available isolators and also compared among the RTIs. The similarities of characteristics between RTI and the commercial isolators have given an indication that RTI has great potential to be adopted as earthquake base isolator for single storey residential buildings.