z-logo
open-access-imgOpen Access
MICROSTRUCTURE AND MECHANICAL CHARACTERIZATIONS OF LM6-AL/AL2O3 METAL MATRIX COMPOSITES PRODUCED BY STIR CASTING TECHNIQUE
Author(s) -
Essam R. I. Mahmoud,
Awaluddin Mohamed Shaharoun,
Sohaib Z. Khan,
F. O. Elmahroogy,
Hamad AlMohamadi
Publication year - 2021
Publication title -
jurnal teknologi/jurnal teknologi
Language(s) - English
Resource type - Journals
eISSN - 2180-3722
pISSN - 0127-9696
DOI - 10.11113/jurnalteknologi.v83.17130
Subject(s) - materials science , composite material , microstructure , ultimate tensile strength , alloy , brittleness , fracture toughness , composite number , casting
LM6-aluminum alloy based-metal matrix composites (MMC) reinforced with Al2O3 ceramic particles were fabricated through stir casting. Al2O3 particles with different weight content (5, 10, and 15%) were dispersed into the LM6 Al-Si alloy. The macro and microstructures, mechanical properties, fracture surface, hardness, and impact toughness of the resulted MMCs together with the plain LM6 alloy were evaluated. The results showed that the added 5 wt.% Al2O3 was distributed homogenously with good wettability. The addition of Al2O3 refined the constituents of the LM6 alloy; Al-Si dendrites and the α-Al grains. At 10 wt.% Al2O3, some localized clusters appeared with some granular cracks. Increasing the Al2O3 addition to 15 wt.% resulted in particle agglomerations with multiple cracks and porosity. Both the tensile strength and the 0.2 % proof strength of the produced MMCs were improved up to 10 wt.% Al2O3 and then reduced. The fracture surface of 5 wt.% MMC was brittle-ductile mixed-mode fracture dominated by brittle fracture. The other percentages were almost brittle fracture. The hardness of the produced MMCs was remarkably improved. The hardness value reaches to about 86 HV at 10 wt. % Al2O3 addition. The impact toughness of the resulted composite materials was decreased notably at higher addition of Al2O3.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here