
INCORPORATION OF ACALYPHA INDICA EXTRACT IN POLYVINYL ALCOHOL HYDROGELS: PHYSICO-CHEMICAL, ANTIBACTERIAL AND CELL COMPATIBILITY ANALYSES
Author(s) -
Mohamad Amin Jumat,
Nor Syahiran Zahidin,
Mohd Zaini,
Nurul Afiqah Fadzil,
Hadi Nur,
Syafiqah Saidin
Publication year - 2021
Publication title -
jurnal teknologi/jurnal teknologi
Language(s) - English
Resource type - Journals
eISSN - 2180-3722
pISSN - 0127-9696
DOI - 10.11113/jurnalteknologi.v83.14763
Subject(s) - self healing hydrogels , polyvinyl alcohol , antibacterial activity , biocompatibility , wound healing , chemistry , viability assay , traditional medicine , biochemistry , biology , cell , medicine , organic chemistry , bacteria , surgery , genetics
Acalypha indica (A. indica) possesses antibacterial properties and has capability to accelerate wound healing due to its active therapeutic compounds of flavonoid and alkaloid. The incorporation of A. indica extracts in polymer hydrogels is useful for wound treatment, despite the advancement in synthetic medicines and drugs. In this study, polyvinyl alcohol (PVA) hydrogels with different concentrations of A. indica extract (0.5, 1.0, 1.5 and 2.0 mg) were fabricated. The ATR-FTIR spectra testified the presence of A. indica in the hydrogels. More enormous spotted agglomerations were visualized on the higher concentrations of A. indica hydrogels. The A. indica hydrogels became less moisture, more hydrophobic and has low water uptake ability compared to the control hydrogel (without A. indica). The antibacterial activities of the hydrogels against Escherichia coli and Staphylococcus aureus were acted in a dose-dependent manner where higher inhibition zones and higher bacterial retardations were recorded on the hydrogels with higher concentrations of A. indica. The incorporation of A. indica (1.0 - 1.5 mg/mL) has also induced cell viability, cell migration, and proliferation of the human skin fibroblasts. Therefore, optimization of the A. indica hydrogels is crucial in accommodating the bi-functional properties of antibacterial and biocompatibility for wound treatment.