z-logo
open-access-imgOpen Access
An Improved Method In Speech Signal Input Representation Based On DTW Technique For NN Speech Recognition System
Author(s) -
Rubita Sudirman,
Sheikh Hussain Shaikh Salleh,
Shaharuddin Salleh
Publication year - 2012
Publication title -
jurnal teknologi/jurnal teknologi
Language(s) - English
Resource type - Journals
eISSN - 2180-3722
pISSN - 0127-9696
DOI - 10.11113/jt.v46.291
Subject(s) - gradient descent , conjugate gradient method , computer science , speech recognition , mathematics , artificial intelligence , algorithm , artificial neural network
Kertas kerja ini membentangkan pemprosesan semula ciri pertuturan pemalar Pengekodan Ramalan Linear (LPC) bagi menyediakan template rujukan yang boleh diharapkan untuk set perkataan yang hendak dicam menggunakan rangkaian neural buatan. Kertas kerja ini juga mencadangkan penggunaan cirian kenyaringan yang ditakrifkan dari data pertuturan sebagai satu lagi ciri input. Algoritma Warping Masa Dinamik (DTW) menjadi asas kepada algoritma baru yang dibangunkan, ia dipanggil sebagai DTW padanan bingkai (DTW–FF). Algoritma ini direka bentuk untuk melakukan padanan bingkai bagi pemprosesan semula input LPC. Ia bertujuan untuk menyamakan bilangan bingkai input dalam set ujian dengan set rujukan. Pernormalan bingkaian ini adalah diperlukan oleh rangkaian neural yang direka untuk membanding data yang harus mempunyai kepanjangan yang sama, sedangkan perkataan yang sama dituturkan dengan kepanjangan yang berbeza–beza. Dengan melakukan padanan bingkai, bingkai input dan rujukan boleh diubahsuai supaya bilangan bingkaian sama seperti bingkaian rujukan. Satu lagi misi kertas kerja ini ialah mentakrif dan menggunakan cirian kenyaringan menggunakan algoritma penapis harmonik. Selepas kenyaringan ditakrif dan pemalar LPC dinormalkan kepada bilangan bingkaian dikehendaki, pengecaman pertuturan menggunakan rangkaian neural dilakukan. Keputusan yang baik diperoleh sehingga mencapai ketepatan setinggi 98% menggunakan kombinasi cirian DTW–FF dan cirian kenyaringan. Di akhir kertas kerja ini, perbandingan kadar convergence antara Conjugate gradient descent (CGD), Quasi–Newton, dan Steepest Gradient Descent (SGD) dilakukan untuk mendapatkan arah carian titik global yang optimal. Keputusan menunjukkan CGD memberikan nilai titik global yang paling optimal dibandingkan dengan Quasi–Newton dan SGD.Kata kunci: Warping masa dinamik, pernormalan masa, rangkaian neural, pengecaman pertuturan, conjugate gradient descent A pre–processing of linear predictive coefficient (LPC) features for preparation of reliable reference templates for the set of words to be recognized using the artificial neural network is presented in this paper. The paper also proposes the use of pitch feature derived from the recorded speech data as another input feature. The Dynamic Time Warping algorithm (DTW) is the back–bone of the newly developed algorithm called DTW fixing frame algorithm (DTW–FF) which is designed to perform template matching for the input preprocessing. The purpose of the new algorithm is to align the input frames in the test set to the template frames in the reference set. This frame normalization is required since NN is designed to compare data of the same length, however same speech varies in their length most of the time. By doing frame fixing, the input frames and the reference frames are adjusted to the same number of frames according to the reference frames. Another task of the study is to extract pitch features using the Harmonic Filter algorithm. After pitch extraction and linear predictive coefficient (LPC) features fixed to a desired number of frames, speech recognition using neural network can be performed and results showed a very promising solution. Result showed that as high as 98% recognition can be achieved using combination of two features mentioned above. At the end of the paper, a convergence comparison between conjugate gradient descent (CGD), Quasi–Newton, and steepest gradient descent (SGD) search direction is performed and results show that the CGD outperformed the Newton and SGD. Key words: Dynamic time warping, time normalization, neural network, speech recognition, conjugate gradient descent

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here