z-logo
Premium
Detection of rabies virus antigen by the indirect rapid immunohistochemistry test in equines and comparisons with other diagnostic techniques
Author(s) -
Torquato Ranieli B. C.,
Iamamoto Keila,
Fernandes Elaine R.,
Achkar Samira,
Silva Sandriana R.,
Katz Iana S. S.,
Guedes Fernanda
Publication year - 2020
Publication title -
zoonoses and public health
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.87
H-Index - 65
eISSN - 1863-2378
pISSN - 1863-1959
DOI - 10.1111/zph.12745
Subject(s) - rabies virus , rabies , direct fluorescent antibody , virology , biology , reverse transcription polymerase chain reaction , polymerase chain reaction , immunohistochemistry , antigen , virus , encephalitis , japanese encephalitis , pathology , medicine , immunology , biochemistry , messenger rna , gene
Laboratory diagnosis of rabies in equines is essential for distinguishing the disease from other sources of encephalitis. Diagnosis by conventional techniques such as a direct fluorescent antibody test (dFAT) or viral isolation in mice or cell culture can be difficult, and the application of molecular biological methods may be necessary. We performed an indirect rapid immunohistochemistry test (iRIT) for the detection of the rabies virus (RABV) antigen in the central nervous system (CNS) of equines and compared the results with those of other diagnostic techniques. We reviewed result records from the Rabies Diagnosis Laboratory at Instituto Pasteur, São Paulo, Brazil, of 174 samples of equine CNS from July 2014 to June 2016, which were investigated by dFAT, rabies tissue culture infection test (RTCIT), mouse inoculation test (MIT) and reverse transcription‐polymerase chain reaction (RT‐PCR) followed by genetic sequencing. These samples, 29 presented divergent results among techniques and were selected for the performed in the iRIT. The detected positivity rate was 4/29 (14%) by dFAT, 5/28 (18%) by RTCIT, 10/29 (35%) by MIT and 26/27 (96%) by RT‐PCR. We analysed 29 samples through imprints of the cortex, hippocampus, cerebellum and brainstem in slides fixed in 10% buffered formaldehyde. Eighteen samples were identified as positive (62%) by iRIT assay, representing a greater number of positive cases than that detected by dFAT, MIT and RTCIT but not by RT‐PCR. Among the brain regions, the brainstem presented the highest positivity (78%), followed by the hippocampus (69%), cerebellum (67%) and cortex (67%). Our results provide evidence that iRIT can contribute to a rapid diagnosis of rabies in equines and that complementary tests should be used to improve diagnostic accuracy in this species.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here