z-logo
Premium
Ecology of Zoonotic Infectious Diseases in Bats: Current Knowledge and Future Directions
Author(s) -
Hayman D. T. S.,
Bowen R. A.,
Cryan P. M.,
McCracken G. F.,
O’Shea T. J.,
Peel A. J.,
Gilbert A.,
Webb C. T.,
Wood J. L. N.
Publication year - 2013
Publication title -
zoonoses and public health
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.87
H-Index - 65
eISSN - 1863-2378
pISSN - 1863-1959
DOI - 10.1111/zph.12000
Subject(s) - biology , ecology , host (biology) , population , infectious disease (medical specialty) , spillover effect , evolutionary ecology , disease , environmental health , medicine , pathology , economics , microeconomics
Summary Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross‐disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data‐driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here