Premium
Reactive oxygen species during heart regeneration in zebrafish: Lessons for future clinical therapies
Author(s) -
Helston Olivia,
Amaya Enrique
Publication year - 2021
Publication title -
wound repair and regeneration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.847
H-Index - 109
eISSN - 1524-475X
pISSN - 1067-1927
DOI - 10.1111/wrr.12892
Subject(s) - zebrafish , regeneration (biology) , danio , reactive oxygen species , model organism , biology , microbiology and biotechnology , heart development , bioinformatics , medicine , embryonic stem cell , biochemistry , gene
In humans, myocardial infarction (MI) is associated with irreversible damage to heart tissue, resulting in increased morbidity and mortality in patients. By comparison, the zebrafish ( Danio rerio ) is capable of repairing damaged and injured hearts by activating a full regenerative response. By studying model organisms that can regenerate loss heart tissue following injury, such as the zebrafish, a greater insight will be gained into the molecular pathways that can induce and sustain a regenerative response following injury. There is hope that such information may lead to new treatments or therapies aimed at stimulating a better regenerative response in humans that have suffered heart attacks. Recent findings in zebrafish have highlighted an important role for sustained elevated levels of Reactive Oxygen Species (ROS), including hydrogen peroxide (H 2 O 2 ) in the promotion of a regenerative response. Given that elevated levels of H 2 O 2 can be harmful, simply elevating ROS levels directly may not be easy or practical to translate clinically. An alternative approach would be to identify the critical downstream targets of ROS in the promotion of heart regeneration, and then target these clinically using drugs. One such family of potential downstream targets of ROS during heart regeneration are the family of protein tyrosine phosphatases (PTPs), which are known to be exquisitely sensitive to redox regulation and whose inhibition have been linked to the promotion of heart regeneration in zebrafish. In this review, we present an overview of the zebrafish as a model organism for studying cardiac regeneration, including the molecular mechanisms by which cardiac regeneration occurs in response to injury. We then present recent findings linking elevated ROS levels to heart regeneration and their potential downstream targets, the PTPs, including protein tyrosine phosphatase 1B (PTP1B) and the dual specificity phosphatase 6 (DUSP6) in the promotion of heart regeneration.