z-logo
Premium
In vitro effects of tamoxifen on adipose‐derived stem cells
Author(s) -
Pike Steven,
Zhang Ping,
Wei Zhengyu,
Wu Nan,
Klinger Aaron,
Chang Shaohua,
Jones Robert,
Carpenter Jeffrey,
Brown Spencer A,
DiMuzio Paul,
Tulenko Thomas,
Liu Yuan
Publication year - 2015
Publication title -
wound repair and regeneration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.847
H-Index - 109
eISSN - 1524-475X
pISSN - 1067-1927
DOI - 10.1111/wrr.12322
Subject(s) - adipose tissue , matrigel , adipogenesis , wound healing , stem cell , cancer research , apoptosis , medicine , biology , microbiology and biotechnology , immunology , angiogenesis , biochemistry
In breast reconstructive procedures, adipose‐derived stem cells (ASCs) that are present in clinical fat grafting isolates are considered to play the main role in improving wound healing. In patients following chemotherapy for breast cancer, poor soft tissue wound healing is a major problem. However, it is unclear if tamoxifen (TAM) as the most widely used hormonal therapeutic agent for breast cancer treatment, affects the ASCs and ultimately wound healing. This study evaluated whether TAM exposure to in vitro human ASCs modulate cellular functions. Human ASCs were isolated and treated with TAM at various concentrations. The effects of TAM on cell cycle, cell viability and proliferation rates of ASCs were examined by growth curves, MTT assay and BrdU incorporation, respectively. Annexin V and JC‐1 Mitochondrial Membrane Potential assays were used to analyze ASC apoptosis rates. ASCs were cultured in derivative‐specific differentiation media with or without TAM (5 uM) for 3 weeks. Adipogenic and osteogenic differentiation levels were measured by quantitative RT‐PCR and histological staining. TAM has cytotoxic effects on human ASCs through apoptosis and inhibition of proliferation in dose‐ and time‐dependent manners. TAM treatment significantly down‐regulates the capacity of ASCs for adipogenic and osteogenic differentiation ( p <0.05 vs. control), and inhibit the ability of the ASCs to subsequently formed cords in Matrigel. This study is the first findings to our knowledge that demonstrated that TAM inhibited ASC proliferation and multi‐lineage ASC differentiation rates. These results may provide insight into the role of TAM with associated poor soft tissue wound healing and decreased fat graft survival in cancer patients receiving TAM.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here