Premium
Accelerated healing in NONcNZO10/LtJ type 2 diabetic mice by FGF ‐1
Author(s) -
Blaber Sachiko I.,
Diaz Jose,
Blaber Michael
Publication year - 2015
Publication title -
wound repair and regeneration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.847
H-Index - 109
eISSN - 1524-475X
pISSN - 1067-1927
DOI - 10.1111/wrr.12305
Subject(s) - chemistry , microbiology and biotechnology , biology
The development of novel therapies to treat chronic diabetic ulcers depends upon appropriate animal models for early stage investigation. The NONcNZO10/LtJ mouse is a new polygenic strain developed to more realistically model human metabolic syndrome and obesity‐induced type 2 diabetes; however, detailed wound healing properties have not been reported. Herein, we describe a quantitative wound healing study in the NONcNZO10/LtJ mouse using a splinted excisional wound. The rate of wound healing is compared to various controls, and is also quantified in response to topical administration of normal and mutant fibroblast growth factor‐1 (FGF‐1). Quantitation of reepithelialization shows that the diabetic condition in the NONcNZO10/LtJ mouse is concomitant with a decreased rate of dermal healing. Furthermore, topical administration of a FGF‐1/heparin formulation effectively accelerates reepithelialization. A similar acceleration can also be achieved by a stabilized mutant form of FGF‐1 formulated in the absence of heparin. Such accelerated rates of healing are not associated with any abnormal histology in the healed wounds. The results identify the NONcNZO10/LtJ mouse as a useful model of impaired wound healing in type 2 diabetes, and further, identify engineered forms of FGF‐1 as a potential “second‐generation” therapeutic to promote diabetic dermal wound healing.