Premium
Automatic adjustment of harrowing intensity in cereals using digital image analysis
Author(s) -
Gerhards Roland,
Späth Michael,
Sökefeld Markus,
Peteinatos Gerassimos G.,
Nabout Adnan,
Rueda Ayala Victor
Publication year - 2021
Publication title -
weed research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.693
H-Index - 74
eISSN - 1365-3180
pISSN - 0043-1737
DOI - 10.1111/wre.12458
Subject(s) - harrow , tine , weed , intensity (physics) , weed control , mathematics , crop , digital image analysis , precision agriculture , agronomy , horticulture , agricultural engineering , agriculture , computer science , biology , engineering , physics , computer vision , ecology , optics , structural engineering
Abstract Precision farming technologies were implemented into a commercial harrow to increase selectivity of weed harrowing in spring cereals. Digital cameras were mounted before and after the harrow measuring crop cover. Crop soil cover (CSC) was computed out of these two images. Eight field experiments were carried out in spring cereals. Mode of harrowing intensity was changed in four experiments by speed, number of passes and tine angle. Each mode was varied in five intensities. In four experiments, only intensity of harrowing was changed. Weed control efficacy (WCE) and CSC were measured immediately after harrowing. Crop recovery was assessed 14 days after harrowing. Modes of intensity were not significantly different. However, intensity had significant effects on WCE and CSC. Cereals recovered from 10% CSC, and selectivity was in the constant range at 10% CSC. Therefore, 10% CSC was the threshold for the decision algorithm. If the actual CSC was below 10% CSC, intensity was increased. If the actual CSC was higher than 10%, intensity was decreased. Image analysis, decision support system and automatic control of harrowing intensity by hydraulic adjustment of tine angle were installed on a controller mounted on the harrow. The new system was tested in an additional field study. Threshold values for CSC were set at 10%, 30% and 60%. Automatic tine angle adjustment precisely realised the three different CSC values with variations of 1.5% to 3%. This development contributes to selective weed control and supports farmers during harrowing.