Premium
USING MACHINE LEARNING TO CLASSIFY IMAGE FEATURES FROM CANINE PELVIC RADIOGRAPHS: EVALUATION OF PARTIAL LEAST SQUARES DISCRIMINANT ANALYSIS AND ARTIFICIAL NEURAL NETWORK MODELS
Author(s) -
McEvoy Fintan J.,
Amigo José M.
Publication year - 2012
Publication title -
veterinary radiology and ultrasound
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.541
H-Index - 60
eISSN - 1740-8261
pISSN - 1058-8183
DOI - 10.1111/vru.12003
Subject(s) - artificial intelligence , linear discriminant analysis , pattern recognition (psychology) , artificial neural network , medicine , partial least squares regression , radiography , machine learning , computer science , radiology
As the number of images per study increases in the field of veterinary radiology, there is a growing need for computer‐assisted diagnosis techniques. The purpose of this study was to evaluate two machine learning statistical models for automatically identifying image regions that contain the canine hip joint on ventrodorsal pelvis radiographs. A training set of images (120 of the hip and 80 from other regions) was used to train a linear partial least squares discriminant analysis ( PLS ‐ DA ) model and a nonlinear artificial neural network ( ANN ) model to classify hip images. Performance of the models was assessed using a separate test image set (36 containing hips and 20 from other areas). Partial least squares discriminant analysis model achieved a classification error, sensitivity, and specificity of 6.7%, 100%, and 89%, respectively. The corresponding values for the ANN model were 8.9%, 86%, and 100%. Findings indicated that statistical classification of veterinary images is feasible and has the potential for grouping and classifying images or image features, especially when a large number of well‐classified images are available for model training.