Premium
Development of a conditional localization approach to control apicoplast protein trafficking in malaria parasites
Author(s) -
Roberts Aleah D.,
Nair Sethu C.,
Guerra Alfredo J.,
Prigge Sean T.
Publication year - 2019
Publication title -
traffic
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.677
H-Index - 130
eISSN - 1600-0854
pISSN - 1398-9219
DOI - 10.1111/tra.12656
Subject(s) - apicoplast , biology , plasmodium falciparum , biotinylation , malaria , plasmodium chabaudi , computational biology , plasmodium (life cycle) , microbiology and biotechnology , function (biology) , transport protein , parasite hosting , apicomplexa , biochemistry , immunology , parasitemia , world wide web , computer science
Secretory proteins are of particular importance to apicomplexan parasites and comprise over 15% of the genomes of the human pathogens that cause diseases like malaria, toxoplasmosis and babesiosis as well as other diseases of agricultural significance. Here, we developed an approach that allows us to control the trafficking destination of secretory proteins in the human malaria parasite Plasmodium falciparum . Based on the unique structural requirements of apicoplast transit peptides, we designed three conditional localization domains (CLD1, 2 and 3) that can be used to control protein trafficking via the addition of a cell permeant ligand. Studies comparing the trafficking dynamics of each CLD show that CLD2 has the most optimal trafficking efficiency. To validate this system, we tested whether CLD2 could conditionally localize a biotin ligase called holocarboxylase synthetase 1 (HCS1) without interfering with the function of the enzyme. In a parasite line expressing CLD2‐HCS1, we were able to control protein biotinylation in the apicoplast in a ligand‐dependent manner, demonstrating the full functionality of the CLD tool. We have developed and validated a novel molecular tool that may be used in future studies to help elucidate the function of secretory proteins in malaria parasites.