Premium
CLIP‐170 spatially modulates receptor tyrosine kinase recycling to coordinate cell migration
Author(s) -
Zaoui Kossay,
Duhamel Stephanie,
Parachoniak Christine A.,
Park Morag
Publication year - 2019
Publication title -
traffic
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.677
H-Index - 130
eISSN - 1600-0854
pISSN - 1398-9219
DOI - 10.1111/tra.12629
Subject(s) - microbiology and biotechnology , endocytic cycle , endosome , receptor tyrosine kinase , biology , internalization , endocytosis , live cell imaging , lamellipodium , tyrosine kinase , intracellular , receptor , cell migration , signal transduction , cell , biochemistry
Endocytic sorting of activated receptor tyrosine kinases (RTKs), alternating between recycling and degradative processes, controls signal duration, location and surface complement of RTKs. The microtubule (MT) plus‐end tracking proteins (+TIPs) play essential roles in various cellular activities including translocation of intracellular cargo. However, mechanisms through which RTKs recycle back to the plasma membrane following internalization in response to ligand remain poorly understood. We report that net outward‐directed movement of endocytic vesicles containing the hepatocyte growth factor (HGF) Met RTK, requires recruitment of the +TIP, CLIP‐170, as well as the association of CLIP‐170 to MT plus‐ends. In response to HGF, entry of Met into Rab4‐positive endosomes results in Golgi‐localized γ‐ear‐containing Arf‐binding protein 3 (GGA3) and CLIP‐170 recruitment to an activated Met RTK complex. We conclude that CLIP‐170 co‐ordinates the recycling and the transport of Met‐positive endocytic vesicles to plus‐ends of MTs towards the cell cortex, including the plasma membrane and the lamellipodia, thereby promoting cell migration.