Premium
Disruption of EARLY LESION LEAF 1 , encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice
Author(s) -
Cui Yuanjiang,
Peng Youlin,
Zhang Qiang,
Xia Saisai,
Ruan Banpu,
Xu Qiankun,
Yu Xiaoqi,
Zhou Tingting,
Liu He,
Zeng Dali,
Zhang Guangheng,
Gao Zhenyu,
Hu Jiang,
Zhu Li,
Shen Lan,
Guo Longbiao,
Qian Qian,
Ren Deyong
Publication year - 2021
Publication title -
the plant journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.058
H-Index - 269
eISSN - 1365-313X
pISSN - 0960-7412
DOI - 10.1111/tpj.15079
Subject(s) - biology , programmed cell death , dna damage , mutant , reactive oxygen species , microbiology and biotechnology , chloroplast , biochemistry , gene , apoptosis , dna
Summary Lesion‐mimic mutants (LMMs) provide a valuable tool to reveal the molecular mechanisms determining programmed cell death (PCD) in plants. Despite intensive research, the mechanisms behind PCD and the formation of lesions in various LMMs still remain to be elucidated. Here, we identified a rice ( Oryza sativa ) LMM, early lesion leaf 1 ( ell1 ), cloned the causal gene by map‐based cloning, and verified this by complementation. ELL1 encodes a cytochrome P450 monooxygenase, and the ELL1 protein was located in the endoplasmic reticulum. The ell1 mutant exhibited decreased chlorophyll contents, serious chloroplast degradation, upregulated expression of chloroplast degradation‐related genes, and attenuated photosynthetic protein activity, indicating that ELL1 is involved in chloroplast development. RNA sequencing analysis showed that genes related to oxygen binding were differentially expressed in ell1 and wild‐type plants; histochemistry and paraffin sectioning results indicated that hydrogen peroxide (H 2 O 2 ) and callose accumulated in the ell1 leaves, and the cell structure around the lesions was severely damaged, which indicated that reactive oxygen species (ROS) accumulated and cell death occurred in the mutant. TUNEL staining and comet experiments revealed that severe DNA degradation and abnormal PCD occurred in the ell1 mutants, which implied that excessive ROS accumulation may induce DNA damage and ROS‐mediated cell death in the mutant. Additionally, lesion initiation in the ell1 mutant was light dependent and temperature sensitive. Our findings revealed that ELL1 affects chloroplast development or function, and that loss of ELL1 function induces ROS accumulation and lesion formation in rice.