z-logo
Premium
Metabolomic profiling of wild‐type and mutant soybean root nodules using laser‐ablation electrospray ionization mass spectrometry reveals altered metabolism
Author(s) -
Agtuca Beverly J.,
Stopka Sylwia A.,
Evans Sterling,
Samarah Laith,
Liu Yang,
Xu Dong,
Stacey Minviluz G.,
Koppenaal David W.,
PašaTolić Ljiljana,
Anderton Christopher R.,
Vertes Akos,
Stacey Gary
Publication year - 2020
Publication title -
the plant journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.058
H-Index - 269
eISSN - 1365-313X
pISSN - 0960-7412
DOI - 10.1111/tpj.14815
Subject(s) - metabolomics , root nodule , bradyrhizobium japonicum , biology , symbiosis , nitrogen fixation , wild type , mutant , metabolic pathway , biochemistry , metabolism , botany , rhizobiaceae , gene , bacteria , genetics , bioinformatics
SUMMARY The establishment of the nitrogen‐fixing symbiosis between soybean and Bradyrhizobium japonicum is a complex process. To document the changes in plant metabolism as a result of symbiosis, we utilized laser ablation electrospray ionization‐mass spectrometry (LAESI‐MS) for in situ metabolic profiling of wild‐type nodules, nodules infected with a B. japonicum nifH mutant unable to fix nitrogen, nodules doubly infected by both strains, and nodules formed on plants mutated in the stearoyl‐acyl carrier protein desaturase ( sacpd‐c ) gene, which were previously shown to have an altered nodule ultrastructure. The results showed that the relative abundance of fatty acids, purines, and lipids was significantly changed in response to the symbiosis. The nifH mutant nodules had elevated levels of jasmonic acid, correlating with signs of nitrogen deprivation. Nodules resulting from the mixed inoculant displayed similar, overlapping metabolic distributions within the sectors of effective (fix + ) and ineffective ( nifH mutant, fix − ) endosymbionts. These data are inconsistent with the notion that plant sanctioning is cell autonomous. Nodules lacking sacpd‐c displayed an elevation of soyasaponins and organic acids in the central necrotic regions. The present study demonstrates the utility of LAESI‐MS for high‐throughput screening of plant phenotypes. Overall, nodules disrupted in the symbiosis were elevated in metabolites related to plant defense.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here