z-logo
Premium
Phosphoproteomic analysis reveals plant DNA damage signalling pathways with a functional role for histone H2 AX phosphorylation in plant growth under genotoxic stress
Author(s) -
Waterworth Wanda M.,
Wilson Michael,
Wang Dapeng,
Nuhse Thomas,
Warward Stacey,
Selley Julian,
West Christopher E.
Publication year - 2019
Publication title -
the plant journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.058
H-Index - 269
eISSN - 1365-313X
pISSN - 0960-7412
DOI - 10.1111/tpj.14495
Subject(s) - dna damage , biology , phosphoproteomics , histone , phosphorylation , dna repair , microbiology and biotechnology , genetics , protein phosphorylation , dna , protein kinase a
Summary DNA damage responses are crucial for plant growth under genotoxic stress. Accumulating evidence indicates that DNA damage responses differ between plant cell types. Here, quantitative shotgun phosphoproteomics provided high‐throughput analysis of the DNA damage response network in callus cells. MS analysis revealed a wide network of highly dynamic changes in the phosphoprotein profile of genotoxin‐treated cells, largely mediated by the ATAXIA TELANGIECTASIA MUTATED ( ATM ) protein kinase, representing candidate factors that modulate plant growth, development and DNA repair. A C‐terminal dual serine target motif unique to H2 AX in the plant lineage showed 171‐fold phosphorylation that was absent in atm mutant lines. The physiological significance of post‐translational DNA damage signalling to plant growth and survival was demonstrated using reverse genetics and complementation studies of h2ax mutants, establishing the functional role of ATM ‐mediated histone modification in plant growth under genotoxic stress. Our findings demonstrate the complexity and functional significance of post‐translational DNA damage signalling responses in plants and establish the requirement of H2 AX phosphorylation for plant survival under genotoxic stress.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here