z-logo
Premium
Computational aspects underlying genome to phenome analysis in plants
Author(s) -
Bolger Anthony M.,
Poorter Hendrik,
Dumschott Kathryn,
Bolger Marie E.,
Arend Daniel,
Osorio Sonia,
Gundlach Heidrun,
Mayer Klaus F. X.,
Lange Matthias,
Scholz Uwe,
Usadel Björn
Publication year - 2019
Publication title -
the plant journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.058
H-Index - 269
eISSN - 1365-313X
pISSN - 0960-7412
DOI - 10.1111/tpj.14179
Subject(s) - phenome , computational biology , genome , biology , computer science , evolutionary biology , genetics , gene
Summary Recent advances in genomics technologies have greatly accelerated the progress in both fundamental plant science and applied breeding research. Concurrently, high‐throughput plant phenotyping is becoming widely adopted in the plant community, promising to alleviate the phenotypic bottleneck. While these technological breakthroughs are significantly accelerating quantitative trait locus ( QTL) and causal gene identification, challenges to enable even more sophisticated analyses remain. In particular, care needs to be taken to standardize, describe and conduct experiments robustly while relying on plant physiology expertise. In this article, we review the state of the art regarding genome assembly and the future potential of pangenomics in plant research. We also describe the necessity of standardizing and describing phenotypic studies using the Minimum Information About a Plant Phenotyping Experiment ( MIAPPE ) standard to enable the reuse and integration of phenotypic data. In addition, we show how deep phenotypic data might yield novel trait−trait correlations and review how to link phenotypic data to genomic data. Finally, we provide perspectives on the golden future of machine learning and their potential in linking phenotypes to genomic features.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here