z-logo
Premium
The glycan‐dependent ERAD machinery degrades topologically diverse misfolded proteins
Author(s) -
Shin YunJi,
Vavra Ulrike,
Veit Christiane,
Strasser Richard
Publication year - 2018
Publication title -
the plant journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.058
H-Index - 269
eISSN - 1365-313X
pISSN - 0960-7412
DOI - 10.1111/tpj.13851
Subject(s) - endoplasmic reticulum associated protein degradation , endoplasmic reticulum , biology , microbiology and biotechnology , protein folding , glycan , glycoprotein , unfolded protein response , arabidopsis , biochemistry , mutant , gene
Summary Many soluble and integral membrane proteins fold in the endoplasmic reticulum ( ER ) with the help of chaperones and folding factors. Despite these efforts, protein folding is intrinsically error prone and amino acid changes, alterations in post‐translational modifications or cellular stress can cause protein misfolding. Folding‐defective non‐native proteins are cleared from the ER and typically undergo ER ‐associated degradation ( ERAD ). Here, we investigated whether different misfolded glycoproteins require the same set of ERAD factors and are directed to HRD 1 complex‐mediated degradation in plants. We generated a series of glycoprotein ERAD substrates harboring a misfolded domain from Arabidopsis STRUBBELIG or the BRASSINOSTEROID INSENSITVE 1 receptor fused to different membrane anchoring regions. We show that single pass and multispanning ERAD substrates are subjected to glycan‐dependent degradation by the HRD 1 complex. However, the presence of a powerful ER exit signal in the multispanning ERAD substrates causes competition with ER quality control and targeting of misfolded glycoproteins to the vacuole. Our results demonstrate that the same machinery is used for degradation of topologically different misfolded glycoproteins in the ER of plants.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here