Premium
Diluted seawater affects phytohormone receptors and maintains the protonema stage in Physcomitrella patens
Author(s) -
Zheng Zhenbing,
Gao Shan,
Huan Li,
Wang GuangCe
Publication year - 2018
Publication title -
the plant journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.058
H-Index - 269
eISSN - 1365-313X
pISSN - 0960-7412
DOI - 10.1111/tpj.13764
Subject(s) - protonema , physcomitrella patens , biology , gametophyte , botany , protoplast , phaeodactylum tricornutum , microbiology and biotechnology , moss , algae , gene , genetics , mutant , pollen
Summary Due to its highly efficient homologous recombination ability and unusual evolutionary position, the moss Physcomitrella patens has begun to attract more attention in genetic and evolutionary studies. Protonema, the filament stage of the gametophyte, is of great significance in P. patens protoplast isolation. Moreover, protonema is widely used in genetic engineering. However, difficulties in the induction and state maintenance of protonema restrict its wider application. In this work, protonema was induced efficiently in a diluted seawater medium, and the filamentous state was maintained without further cell differentiation. The developmental process of the protonema resumed, progressing to bud assembly and gametophore formation after transfer to freshwater medium. In addition, a transcriptome analysis showed that plant hormone signal transduction pathways were downregulated when protonema was grown in diluted seawater medium. Consistent with the transcriptome results, the protonema failed to respond to the addition of indole‐3‐acetic acid and 6‐benzylaminopurine to the diluted seawater medium. Based on these results, we concluded that diluted seawater medium blocks the differentiation of protonema. This result could provide a novel insight to benefit future protonema production.