z-logo
Premium
Os MAPK 6, a mitogen‐activated protein kinase, influences rice grain size and biomass production
Author(s) -
Liu Shuying,
Hua Lei,
Dong Sujun,
Chen Hongqi,
Zhu Xudong,
Jiang Jun'e,
Zhang Fang,
Li Yunhai,
Fang Xiaohua,
Chen Fan
Publication year - 2015
Publication title -
the plant journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.058
H-Index - 269
eISSN - 1365-313X
pISSN - 0960-7412
DOI - 10.1111/tpj.13025
Subject(s) - mutant , dwarfism , protein kinase a , biology , oryza sativa , mapk/erk pathway , microbiology and biotechnology , kinase , gene , biochemistry
Summary Grain size is an important agronomic trait in determining grain yield. However, the molecular mechanisms that determine the final grain size are not well understood. Here, we report the functional analysis of a rice ( Oryza sativa L.) mutant, dwarf and small grain1 ( dsg1 ), which displays pleiotropic phenotypes, including small grains, dwarfism and erect leaves. Cytological observations revealed that the small grain and dwarfism of dsg1 were mainly caused by the inhibition of cell proliferation. Map‐based cloning revealed that DSG 1 encoded a mitogen‐activated protein kinase ( MAPK ), Os MAPK 6. Os MAPK 6 was mainly located in the nucleus and cytoplasm, and was ubiquitously distributed in various organs, predominately in spikelets and spikelet hulls, consistent with its role in grain size and biomass production. As a functional kinase, Os MAPK 6 interacts strongly with Os MKK 4, indicating that Os MKK 4 is likely to be the upstream MAPK kinase of Os MAPK 6 in rice. In addition, hormone sensitivity tests indicated that the dsg1 mutant was less sensitive to brassinosteroids ( BR s). The endogenous BR levels were reduced in dsg1 , and the expression of several BR signaling pathway genes and feedback‐inhibited genes was altered in the dsg1 mutant, with or without exogenous BR s, indicating that Os MAPK 6 may contribute to influence BR homeostasis and signaling. Thus, Os MAPK 6, a MAPK , plays a pivotal role in grain size in rice, via cell proliferation, and BR signaling and homeostasis.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here