Premium
A chemical complementation approach reveals genes and interactions of flavonoids with other pathways
Author(s) -
Pourcel Lucille,
Irani Niloufer G.,
Koo Abraham J. K.,
BohorquezRestrepo Andres,
Howe Gregg A.,
Grotewold Erich
Publication year - 2013
Publication title -
the plant journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.058
H-Index - 269
eISSN - 1365-313X
pISSN - 0960-7412
DOI - 10.1111/tpj.12129
Subject(s) - complementation , gene , computational biology , genetics , biology , chemistry , phenotype
Summary In addition to the classical functions of flavonoids in the response to biotic/abiotic stress conditions, these phenolic compounds have been implicated in the modulation of various developmental processes. These findings suggest that flavonoids are more integral components of the plant signaling machinery than traditionally recognized. To understand how flux through the flavonoid pathway affects plant cellular processes, we used wild‐type and chalcone isomerase mutant ( transparent testa 5 , tt5 ) seedlings grown under anthocyanin inductive conditions, in the presence or absence of the flavonoid intermediate naringenin, the product of the chalcone isomerase enzyme. Because flavonoid biosynthetic genes are expressed under anthocyanin inductive conditions regardless of whether anthocyanins are formed or not, this system provides an excellent opportunity to specifically investigate the molecular changes associated with increased flux through the flavonoid pathway. By assessing genome‐wide m RNA accumulation changes in naringenin‐treated and untreated tt5 and wild‐type seedlings, we identified a flavonoid‐responsive gene set associated with cellular trafficking, stress responses and cellular signaling. Jasmonate biosynthetic genes were highly represented among the signaling pathways induced by increased flux through the flavonoid pathway. In contrast to studies showing a role for flavonoids in the control of auxin transport, no effect on auxin‐responsive genes was observed. Taken together, our data suggest that Arabidopsis can sense flavonoids as a signal for multiple fundamental cellular processes.