Premium
Novelty and Inductive Generalization in Human Reinforcement Learning
Author(s) -
Gershman Samuel J.,
Niv Yael
Publication year - 2015
Publication title -
topics in cognitive science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.191
H-Index - 56
eISSN - 1756-8765
pISSN - 1756-8757
DOI - 10.1111/tops.12138
Subject(s) - novelty , reinforcement learning , artificial intelligence , machine learning , computer science , generalization , inductive bias , inference , bayesian inference , set (abstract data type) , bayesian probability , exploit , multi task learning , task (project management) , psychology , mathematics , social psychology , mathematical analysis , management , computer security , programming language , economics
In reinforcement learning (RL), a decision maker searching for the most rewarding option is often faced with the question: What is the value of an option that has never been tried before? One way to frame this question is as an inductive problem: How can I generalize my previous experience with one set of options to a novel option? We show how hierarchical Bayesian inference can be used to solve this problem, and we describe an equivalence between the Bayesian model and temporal difference learning algorithms that have been proposed as models of RL in humans and animals. According to our view, the search for the best option is guided by abstract knowledge about the relationships between different options in an environment, resulting in greater search efficiency compared to traditional RL algorithms previously applied to human cognition. In two behavioral experiments, we test several predictions of our model, providing evidence that humans learn and exploit structured inductive knowledge to make predictions about novel options. In light of this model, we suggest a new interpretation of dopaminergic responses to novelty.