Premium
A convolutional neural network approach to predict non‐permissive environments from moderate‐resolution imagery
Author(s) -
Goodman Seth,
BenYishay Ariel,
Runfola Daniel
Publication year - 2021
Publication title -
transactions in gis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.721
H-Index - 63
eISSN - 1467-9671
pISSN - 1361-1682
DOI - 10.1111/tgis.12661
Subject(s) - convolutional neural network , satellite imagery , computer science , artificial intelligence , event (particle physics) , geography , data mining , remote sensing , physics , quantum mechanics
Abstract Convolutional neural networks (CNNs) trained with satellite imagery have been successfully used to generate measures of development indicators, such as poverty, in developing nations. This article explores a CNN‐based approach leveraging Landsat 8 imagery to predict locations of conflict‐related deaths. Using Nigeria as a case study, we use the Armed Conflict Location & Event Data (ACLED) dataset to identify locations of conflict events that did or did not result in a death. Imagery for each location is used as an input to train a CNN to distinguish fatal from non‐fatal events. Using 2014 imagery, we are able to predict the result of conflict events in the following year (2015) with 80% accuracy. While our approach does not replace the need for causal studies into the drivers of conflict death, it provides a low‐cost solution to prediction that requires only publicly available imagery to implement. Findings suggest that the information contained in moderate‐resolution imagery can be used to predict the likelihood of a death due to conflict at a given location in Nigeria the following year, and that CNN‐based methods of estimating development‐related indicators may be effective in applications beyond those explored in the literature.