z-logo
Premium
A multi‐modal transportation data‐driven approach to identify urban functional zones: An exploration based on Hangzhou City, China
Author(s) -
Du Zhenhong,
Zhang Xiaoyi,
Li Wenwen,
Zhang Feng,
Liu Renyi
Publication year - 2020
Publication title -
transactions in gis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.721
H-Index - 63
eISSN - 1467-9671
pISSN - 1361-1682
DOI - 10.1111/tgis.12591
Subject(s) - modal , computer science , consistency (knowledge bases) , identification (biology) , latent semantic analysis , process (computing) , geography , urban planning , point of interest , data mining , transport engineering , artificial intelligence , engineering , civil engineering , ecology , chemistry , polymer chemistry , biology , operating system
Recent urban studies have used human mobility data such as taxi trajectories and smartcard data as a complementary way to identify the social functions of land use. However, little work has been conducted to reveal how multi‐modal transportation data impact on this identification process. In our study, we propose a data‐driven approach that addresses the relationships between travel behavior and urban structure: first, multi‐modal transportation data are aggregated to extract explicit statistical features; then, topic modeling methods are applied to transform these explicit statistical features into latent semantic features; and finally, a classification method is used to identify functional zones with similar latent topic distributions. Two 10‐day‐long “big” datasets from the 2,370 bicycle stations of the public bicycle‐sharing system, and up to 9,992 taxi cabs within the core urban area of Hangzhou City, China, as well as point‐of‐interest data are tested to reveal the extent to which different travel modes contribute to the detection and understanding of urban land functions. Our results show that: (1) using latent semantic features delineated from the topic modeling process as the classification input outperforms approaches using explicit statistical features; (2) combining multi‐modal data visibly improves the accuracy and consistency of the identified functional zones; and (3) the proposed data‐driven approach is also capable of identifying mixed land use in the urban space. This work presents a novel attempt to uncover the hidden linkages between urban transportation patterns with urban land use and its functions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here